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t Technische Universitat Wien, Vienna, Austria 
$ Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo Postal 20-364, 
Mexico, DF 01000, Mexico 
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Abstract. In a previous paper, with a similar title, we showed that for bijective (i.e. 
one-to-one onto) canonical transformations we can obtain their quantum mechanical 
representations in the form of a kernel in the phase space of Wigner distribution functions 
and recover our classical expectation for this kernel in the limit h + 0. For non-bijective 
canonical transformations the situation is more complex as the phase space acquires either 
a Riemann surface structure or requires the introduction of the concept of an ambiguity 
group. By discussing the non-bijective canonical transformation taking us from an oscillator 
of frequency K - ’ ,  where K is an integer, to one of unit frequency, we see how the kernel 
is generalised to include the indices associated with the irreducible representations of the 
ambiguity group, i.e. the ambiguity spins. We obtain the kernel explicitly and show that 
in the limit h + 0 we recover the form that we expect in the Riemann surface picture of 
our phase space. While we illustrate our  analysis through the representation in Wigner 
distribution phase space of a specific non-bijective canonical transformation, the procedure 
is clearly extendable to the representations of general canonical transformations of this type. 

1. Introduction and summary 

One of the authors (MM) and his collaborators have discussed extensively the rep- 
resentations in quantum mechanics of non-linear and non-bijective canonical transfor- 
mations (Mello and Moshinsky 1975, Kramer et a1 1978, Moshinsky and Seligman 
1978, 1979, Deenen et a1 1980, Flores er al 1986). The representations, to be denoted 
by U, were given in definite Hilbert spaces like, for example, the one associated with 
the coordinate q ;  thus the matrix elements (q l  Ulq’) associated with specific canonical 
transformations were derived explicitly. It is not easy though to see in this picture the 
quantum modifications to the canonical transformations, as the latter are formulated 
in phase space rather than in Hilbert space. Thus Garcia-Calderbn and Moshinsky 
(1980) discussed the representatiop of bijective (i.e. one-to-one onto) canonical trans- 
formations in the phase space version of quantum mechanics developed originally by 
Wigner (1932). In the present article we will extend the analysis to non-bijective 
canonical transformations through the specific example relating an oscillator of unit 
frequency with another one of frequency K - ’ ,  where K is an integer. This example is 
sufficiently general to characterise the main features of the problem. 
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We proceed now to outline the main steps of our analysis. In § 2 we briefly review 
the work of Garcia-Calderon and Moshinsky (1980) so as to derive the kernel, to be 
denoted by K, that serves as the representation of the canonical transformation in 
phase space, i.e. we determine explicitly the matrix element (q’p‘lKlqp) in terms of 
that of (41 Ulq’). In § 3 we discuss the non-bijective canonical transformation relating 
the action and angle of an oscillator of frequency 1 with the one of frequency K - ’ ,  

where K is integer, and give the corresponding representation (41 Ulq’). In § 4 we derive 
(q’p‘lKlqp) for the canonical transformation mentioned, while in § 5 we discuss its 
limit when h + 0 so as to recover the explicit classical limit of (q’p’lKlqp) mentioned 
in 0 2. Finally in § 6 we indicate how we can proceed from our specific example to 
the general problem of representations of non-bijective canonical transformations in 
Wigner distribution space. 

2. Representation of canonical transformations in the phase space of Wigner 
distribution functions 

We begin by recalling the definition of the Wigner distribution function f(q, p )  for a 
given wavefunction $(q), i.e. 

31 

f ( 4 ,  P)  = ( d i - l  j- ($lq+t)(q-yl+)  exP(i2PYlh) dY (2.1) 

where we use Dirac’s notation (414) = $(q),  ($/q) = $*(q), and restrict ourselves to a 
single degree of freedom. As is well known (Wigner 1932), the integration of f(q, p )  
with respect to p or q gives respectively the probability density for the state I$) in 
configuration or momentum space. 

-X 

We consider now a canonical transformation 

under which a classical distribution function f( q, p )  would of course transform into 
F(q,  P)  given by 

F(q,  P) = f ( Q ( q , P ) ,  P(q,  P)). (2.3) 
In quantum mechanics, however, the state I $ )  transforms (Mello and Moshinsky 1975, 
Kramer er a1 1978, Moshinsky and Seligman 1978, 1979, Deenen et a1 1980) into 

I $ ) +  I‘JO = U / $ )  (2.4) 
and thus 

F ( q , p ) =  (nfi)-’ (%+yHq--ylW exp(2ipy/fi) dy 
31 

-E 

-X 
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Writing z* = q’ky’  when it is associated with $, and z ,  = q’kty’ when it is associated 
with U, and integrating over q’, y’ ,  j ’ ,  y with the extra factor 

X 

6 ( y ’ - j ’ )  = (h-’ exp[2ip‘(y’-ty’)/h] dp’ (2.6) L 
we immediately arrive at the relation 

in which the kernel K is given by 
1) 

- X  

(2.7) 

whereas from (2.3) we expect that in the classical limit, i.e. when h + 0, we should obtain 

p -0 (q‘p’lKlqp) = S(q’- Q(q,p))S(p’-  P(q,  P)). (2.9) 

The above derivation of (q’p’IKIqp) is the one given by Garcia-Calder6n and 
Moshinsky ( 1980) and implicitly presupposes that the canonical transformation (2.2) 
is bijective (i.e. one-to-one onto) so that the representation (41 Ulq’) has no ambiguity 
spin indices (Kramer er a1 1978, Moshinsky and Seligman 1981). Furthermore the 
classical limit (2.9) holds in this case as the phase space has only one sheet. In the 
next section we consider a particular non-bijective canonical transformation and the 
way it affects the kernel (2.8) and its limit (2.9). 

3. Non-bijective canonical transformations relating two oscillators of different 
frequencies and their representation in quantum mechanics 

Among the simplest of the non-linear and non-bijective canonical transformations is 
the one that relates an oscillator of frequency K - ’ ,  with K integer, with another one 
of unit frequency. 

Denoting by q, p the coordinates and momenta of the oscillator of frequency K - ’ ,  

and taking units in which the mass of the particle becomes unity, the Hamiltonian 
takes the form 

$( p 2 +  K-2q2). (3.1) 
It is convenient to carry out the dilation transformation 

4 + K “’q ( 3 . 2 ~ )  

p + K - ’ l 2  P (3.26) 

K - ’ f (  p 2 +  q2) K - ’ j  (3.3a) 
where j is the action variable of the oscillator (Moshinsky and Seligman 1978). The 
canonically conjugate variable to (3.3a) is given by 

K(P K tan-’( p / q )  (3.36) 

to convert (3.1) into 
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where q is the angle variable, and we have have the Poisson bracket relation 

aj acp aj acp 

a4 aP aP a4 
{ j ,  cp),,,=- --- -- - 1 .  ( 3 .4 )  

Turning now our attention to the oscillator of unit frequency whose coordinates 
and momenta will be denoted by ( Q ,  P )  the corresponding action and angle variables 
are defined by (Moshinsky and Seligman 1978) 

( 3 . 5 ~ )  

(3 .56 )  

where in this case the action J coincides with the Hamiltonian of the oscillator and 
we still have 

J = t (  P’+ 0’) 
@ = tan-’( P /  0) 

{J, @ ) Q , P  = 1 .  ( 3 .6 )  
The canonical transformation relating these two oscillators is just a dilation in the 

action-angle phase space, i.e. 

( 3 . 7 ~ )  

(3 .7b )  

To obtain the corresponding expression for Q, P as functions of q, p we notice that 

~ = ( 2 ~ ) ” 2 C O S @ = ( 2 j / K ) ” 2 C O S  K p  ( 3 . 8 ~ )  
P = ( 2 ~ ) ” ’  sin @ = ( 2 j /  K ) I / ’  sin K(P (3 .8b )  

and using the development of C O S ( K ~ ) ,  sin(Kcp) in terms of powers of cos cp, sin cp 
(Gradshteyn and Ryzhik 1965, p 27) together with the fact that 

( 3 . 9 ~ )  

(3 .9b )  

q = ( 2 j p 2  cos cp 

p = (2 j )1’2  sin cp 

we get the non-linear canonical transformation (Moshinsky and Seligman 1981) 

( 3 . 1 0 ~ )  

(3 .10b)  

The mapping between the phase spaces ( q ,  p )  and (0, P )  is illustrated in figure 1 
where clearly, from (3 .7b ) ,  a sector of angle ( ~ T / K )  in the ( q , p )  plane of figure l ( a )  

+-I- 
[ a  1 ib l  ‘ 

Figure 1. A sector 2 n / u  in the ( 9 , p )  phase space of ( a )  is mapped on the full (Q, P )  
plane of ( 6 )  by the canonical transformation (3.10). The cut connecting the different sheets 
in the (Q, P )  plane is marked by a bold line in ( b ) .  
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is mapped on the full plane (Q, P )  of figure 1( 6). Thus the canonical transformation 
is non-bijective and to retrieve bijectivity (i.e. a mapping one-to-one onto) the phase 
plane (Q,  P )  must have K sheets (Moshinsky and Seligman 1981) connected along the 
cut in the positive real axis Q as indicated by the bold line in figure l ( b ) .  

In the previous paragraph bijectivity was recovered by associating a Riemann-type 
structure with the phase plane (0, P ) .  Alternatively this objective can be achieved by 
noting that the linear canonical transformation 

qh = q cos(27rAI~)  - p  s i n ( 2 7 r h / ~ )  
h = 0, 1, . . . , K - 1 (3.11) 

PA = q  SiIl(2TA/K)+p COS(27rhlK) 

implies j ,  = j ,  qh = q + ( 2 7 r A / ~ )  and thus, from (3.8), gives us all points ( q A , p h ) ,  
A = 0, 1 , .  . . , K - 1 that map on a single point (Q,  P ) .  Because of this property the 
group of linear canonical transformations (3.1 l) ,  which is isomorphic to the cyclic 
group C,, was called the ambiguity group (Kramer et a1 1978, Moshinsky and Seligman 
1981). Then, instead of a Riemann surface structure for the (Q,  P )  plane, we can 
retain it as a single sheet, but characterise the functions f ( Q ,  P )  in it by irreducible 
representations (irreps), of the group C,, of which there are K which again can be 
represented by an index A taking the values A = 0, 1, . . . , K - 1 (Moshinsky and Selig- 
man 1981). This index received the name of ambiguity spin and it proved fundamental 
for the definition and determination of the representation in quantum mechanics of 
non-bijective canonical transformations. 

For the oscillators of frequency K - ’  and 1 the canonical transformation (3.10) has 
the ambiguity group (3.11), and thus its representation U in quantum mechanics must 
have an ambiguity spin index A = 0,1,  . . . , K - 1 associated with the irreps of this group. 
The matrix representation can then be written as ( q / U A l q ’ )  and its explicit form is 
given by (Kramer et a1 1978, equation (6.9)) 

(3.12) 

where $,,(q) are the normalised solutions of the Schrodinger equation for an oscillator 
of unit mass and frequency 

(3.13) 

(3.14) 
where H,, are Hermite polynomials. Noie that we keep Planck’s constant h in our 
analysis as one of our main objectives will be to recover the classical picture when h + 0. 

While the reader is referred to the paper of Kramer et a1 (1978) for the explicit 
derivation of (3.12) it is worthwhile to understand it intuitively. Dirac (1958) indicates 
that a canonical transformation that takes a given Hamiltonian into another, when 
both of them have continuous spectra in the interval --CO to 00, would have the unitary 
representation 

T 

(41 ulq’)= (LE(q)4Z.(q‘)  d E  (3.15) 

where (LE(q) ,  4 E ( q )  are the normalised eigenstates of the two Hamiltonians. This 
(41 Ulq’) would have precisely the property of transforming the eigenstate q5E(q)  of 
one of the Hamiltonians into the eigenstate (LE(q) of the other. 
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The expression (3.15) also holds for two Hamiltonians that have the same discrete 
spectra (Mello and Moshinsky 1975) except that a sum then replaces the integral. 

In the case of Hamiltonians of oscillators of frequency K - ’  and 1, the spectra are 
not the same and in fact the former has K levels in the interval in which the latter has 
only one. If we designate by Y the number of quanta of the oscillator of frequency 
K - ’ ,  we can write Y = A mod K ,  i.e. v = n~ + A where A = 0,1, . . . , K - 1.  In this case 
for each value of A we have only one level for the oscillator of frequency K-’ in the 
interval where there is one level for the oscillator of frequency 1. The expression (3.12) 
for (ql U A  14’) establishes then a one-to-one correspondence between the states @ n u + A ( q )  

and 4, , (q)  corresponding to these levels. 
As the representation of the non-bijective canonical transformation (3.10) in 

ordinary Hilbert space carries the ambiguity spin index A, i.e. (qlUAlq’),  we see from 
(2.8) that the kernel K will carry two of these indices as we now have to write 

( 9 ’P ’I K A ‘ A  I 4P ) 
cc 

= ( 2 / r h )  j-j- dY dY’(q+YlUAlq‘+Y’)*(q-YlUA’14‘-Y’) 
--13t 

where we have made use of the fact that (q’l U’lq) = (41 Ulq’)* in which * stands for 
conjugate. 

In the next section we determine the explicit form of (q’p’ lKA’Alqp)  and discuss its 
properties. 

4. The matrix representation of the kernel K in the Wigner distribution phase space 

The matrix (q‘p’lKA’’1qp), which carries the ambiguity spin indices A‘, A = 0, 1, . . . , K - 1 
is given by (3.16). Substituting in it the value (ql U’lq’) of (3.12) we immediately obtain 
that 

X 

(q’p‘lK”Alqp) = (2rh)  f n n ’ ( 4 ,  P ) f n * + A , n ’ K + A ’ ( ! ? ‘ ,  p ’ )  (4.1) 
n , n ’ = O  

where 
X 

f n n , ( q ,  P) = ( ~ f i ) - l  1 4Xq+Y)4 , , (q -Y)  exp(i2pylh) dY (4.2) 
-X  

and a similar definition holds forfnr+A,n’rc+A,(q’r p ‘ )  where the * appearing in (4.1) and 
(4.2) implies conjugation. 

To determine then (q’p’/KA’’1qp) we require first the explicit expression offnnt(q,  p )  
of (4.2) where the function 4,,(q) is given by (3.14). Substituting y in (4.2) by 

and taking into account the explicit expression of qbn(q) given by (3.14), we see that 
f n n s (  q, p )  takes the form 

y = i p + h ” 2 x  (4.3) 

fnn4 q, p )  = (-  1 )”’ exp[ -( q2 + p ’ ) /  h ]  T - ’  h-”2AnAn~ 
X 

H,(x+z)H,, .(x-z*) exp(-x’) dx (4.4) 
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where 

and 

~ = [ ( q + i p ) / h ” ~ ]  (4.6) 

with z*  being its conjugate. 

7.377) and introducing the notation 
The last integral in (4.4) is given in Gradshteyn and Ryzhik (1965, p 838, formula 

r = ( q 2 + p 2 ) ” 2  ( 4 . 7 ~ )  

9 =tan-’(p/q)  (4.76) 

(4.7c) 

one obtains for f,,,(q, p )  the expression 

fnn.(q,p) = .rr-”2h-’R . l m l ( p ) ( 2 ~ ) - ” ~  e x p ( i w )  (4.8) 

where R u l m ,  is the normalised radial function of the two-dimensional oscillator given 

(4.9) 

by 
R p )  = [2( v !I/(  v + Iml) ! I - ’ ’ ~ ( - ~ ) ~ L L ~ ’ (  p ) p  m l  exp(-p2/2) 

with LLm1 being a Laguerre polynomial. The v, m in (4.8) are related to n, n’ by 

2v+lml  = n + n ’  m = n - n ‘ .  (4.10) 

The expression (4.8) is well known, having been derived, among others, by Kriiger 
and Poffyn (1977) who, besides evaluating it directly, used the fact that f,,,( q, p )  satisfies 
the (quantum) Liouville equation, and the eigenvalue equation for the energy in phase 
space, which are precisely those of a two-dimensional oscillator and its angular 
momentum. 

As later we will have to carry out integrations over the phase space whose volume 
element is dq dp we note that it becomes 

(4.1 1 )  

To determine now explicitly the (q’p’lKA ”Iqp)  of (4.1) we need the f n K + A , n ’ K + A s ( q ’ ,  p ’ )  

p ’ =  ( 2 / h ) ” 2 ( q ’ ” p ’ 2 ) ’ ’ 2  p ’=  tan-’(p’/q’). (4.12) 

The function will again have the form (4.8) but with radial and angular quantum 
numbers v’ ,  m’ given by 

2 v ’ +  (”1 = (nK + A )  + (n’K + A’)  = ( 2  v + / M / ) K  + ( A  + A’)  (4.13 a )  

m ’ =  (nK + h ) - ( n ‘ K  + A ’ )  = m K  ( A  - A ’ ) ,  (4.13 b )  
While the m‘ is given explicitly by (4.13b), to determine v‘ we need to discuss 

separately the cases m > 0, m < 0 and m = 0. If m > 0 we note that m ’ >  0 as IA - A ‘ [  < K 

and thus from (4.13) we have 

V I =  V K + A ’ .  ( 4 . 1 4 ~ )  

r d r  d p  = ( h / 2 ) p  d p  d p  

if we use the coordinates (4.7). 

in terms of the polar coordinates 
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If m < O  then m‘<O again because IA - A ‘ I <  K ,  and thus from (4.13) we have 

V ’  = V K  + A. (4.14b) 

If m=O and A > A ’  then m’>O and v ’ = v ~ + A ’ ,  while if A < A ‘  then m’<O and 
v’ = V K  + A. Both possibilities for m = 0 are summarised by 

U ’ =  ~ ~ + m i n ( A ,  A’) .  ( 4 . 1 4 ~ )  

The expression (4.1) for ( q ’ p ’ ( K “ A  ( q p )  involves summations over the indices 
n, n ’ =  0, 1 , 2 , .  . . . Through the relation (4.10) we can transform it to a summation 
over v, m where v = 0 , 1 , 2 , .  . . while m = 0, * l ,  *2 , .  . . . From the discussion of the 
previous paragraph it is convenient to separate the summation over m into m positive, 
m negative (where we change the sign of m )  and m = 0. We thus have 

( q‘p’ lKA’A 1qp) = (.rrh)-’ exp[i( A ‘ - A )cp’] 

x f ( i [Rvm(p) exp(imcp)R,,+, , m K + A - A , ( p ’ )  exp(-imKccp‘)l 
v = O  m = l  

(4.15) 

A check on the expansion (4.8) is provided when K = 1 in which case we see from 
(3.10) that we have the identity canonical transformation, i.e. 

Q = s  P = p  (4.16) 

for which there are no  ambiguity spin indices as A = A ’ =  0. The kernel then must be 
(Garcia-Calder6n and Moshinsky 1980) 

(s’p’lKIqp)= S ( s - “ p - p ’ )  

1 
r’ 

= - 6 ( r - r ’) 6 ( cp - cp ’ ) 

= (2) 1 6 ( p - p ‘ )  s (cp - cp ’1. 
f i  P ’  

(4.17) 

O n  the other hand from (4.15) we see that for K = 1 the kernel becomes 

(s’p’lKlqp)= (2/fi)  c c [R.Iml(P)(2.rr)-”* e x p ( i w ) l  
u = O  m = - x  

x [RYlml(  p ’ ) ( 2 ~ ) ” ’ ~  exp(imcp’)]* 

=(2/fi)(l/pf)6(p-p’)S(cp-cp’) (4.18) 

as the [RYlm~(p) (2 . r r ) - ” *  exp(imcp)], v = 0, 1 , .  . . , m = 0, *1 , .  . . , give a complete and  
orthonormal set of states in the p, cp space. We see that (4.17) and (4.18) coincide. 
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5. The kernel K in the classical limit 

For bijective canonical transformations that take us from q, p to [ Q( q, p ) ,  P(  q, p ) ] ,  
the expected classical limit of the kernel (q 'p ' lKlqp)  is given by the product of 6 
functions appearing in (2.9), which transforms a Wigner distribution function f (  q, p )  
into F (  q, p )  = f [ Q (  q, p ) ,  P( q, p ) ]  as one would expect. 

For the non-bijective case, such as the example discussed in 3 3 of this paper, the 
classical limit is more complex, as the phase space (0, P )  has K-sheets or, equivalently, 
the functions f (0, P )  in it must be characterised by irreducible representation of the 
ambiguity group C, of (3.11). 

Rather than guess the form of the classical limit as we could do it in the bijective 
case, we shall derive it from the limit of (q'p' lK"Alqp)  when h + 0, and then show that 
the result agrees with what we would expect intuitively if we used the K-sheeted 
Riemann surface structure of the Q, P phase space. 

To achieve our purpose we first must analyse the behaviour of the radial function 

R v l m \ (  P )  = Rvjml[(2/ h)"*rI (5.1) 
when A + 0. We note from the definitions (4.7) and (4.9) that 

Furthermore as p = (2/h)"*r tends to CO when h + O  we can replace in this limit the 
Laguerre polynomial in (4.9) by its highest power, i.e. (Gradhsteyn and Ryzhik, 1965, 
p 1037) by 

(-1)"L,"( p 2 )  = ( p 2 " /  v ! )  

( 2 / h ) [ R . ~ m ~ ( p ) ] 2 = ( 4 / h ) [ v ! ( v +  Imi)!]-1(p2)2v+lm1 exp(-p2). (5.4) 
The right-hand side, considered as a function of p 2 ,  has clearly a maximum at 
p 2 = 2 v + l m (  for which 

( 2 / h ) ( R v I m l ( P ) ) Z m a x  (4 /h) [v! (v+ lml)!1-'(2v+ l ~ l ) 2 Y + " '  exp[-(2V+ I m l ) ~  (5.5) 
and thus, when h -0, the maximum of this function tends to CO. From (5.2) and (5.5) 
we conclude that, when A + 0, then 

(5.6) 

(5.3) 
so we can write when h + 0 that 

(2/ f i ) [ ~ v j m l ( ~ ) I "  (4 /h)6[p2  - (2v+ 1ml)I 
since the right-hand side also has a maximum at p 2  = 2 v +  /mi and its integral with 
respect to the volume element r d r  is 1. 

We now turn our attention to the terms R u , + h , , m r + A - A ' (  p ' ) ,  R v K + A , m K - A + A ! ( p ' )  and 
RvK+m,n(h,h'), /A-h'l(  p ' )  appearing in (4.15). A similar analysis indicates that for m > 0 
in the limit h + O  we can write 

(2/ h ) ( R u ~ + A , m , - A + h ' (  p ' ) ) 2  == (2/ h ) ( R v r + h ' , m , + A - h ' (  p ' ) l 2  

(4/ h ) 6 {  p" - [ (2 V + nt ) K  ( A  + A ' ) ] }  

== (4/ h ) 6 [  p" - (2 Y + m)K] ( 5 . 7 ~ )  
while for m = 0 we have 

(2/ h ) ( R v K + m i n ( h , h ' ) , l h - A  I (  P ' ) ) ' =  (4/ h ) 6 [  p"-  (2vK + A  + A ' ) ]  

= (4/ h ) S (  p' - 2 V K  ). (5.76) 
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We note that p” = (2/ h)r”  and thus tends to 00 when h + 0. This implies contribu- 
tions from the S functions only when U, Iml become very large and thus we can disregard 
the A + A ’  appearing there as indicated on the right-hand side of (5.7a, b ) .  

We now note from a similar analysis that when h + 0 we have 

{ ( 2 / h ) [ ~ - ~ ” R ~ l ~ l (  p’K-1’2)]2z ( 4 / h ) 6 [  p’* - ( 2 V +  jml)K] (5.8)  

so clearly in the limit h -f 0 all the radial functions appearing in (5.7) can be replaced 
by K-’/2R Y I m I  ( P f K - 1 / 2 )  and thus substituting in (4.15) we obtain 

(9’P’l K A ‘ A  I4P) 

For a fixed ( m (  the Rvlml( p )  constitute a complete set of orthonormal states where 
the volume element is p dp so that the summation over v gives ( l /p ‘ )S (  p - p ‘ ~ - ’ / ~ ) .  
This then leaves the summation 

(5.10) 

as is obvious from the Fourier expansion of the 6 function. Thus we finally obtain 

lim (q’p’lK“,lqp) = exp[i(A’- A)p‘]( l /r’)S(r - r’K-1’2)8(q - K Q ’ )  

where we made use of the fact that S(ax)  = a - ’ S ( x )  to replace the p by r. 
The expression (5.11) already resembles what we expect classically if we note that 

in action-angle phase space ( j ,  Q) the canonical transformation (3.10) becomes just 
the dilation (3.7) and that furthermore r = (2j)1’2. We notice though that the appearance 
of exp[i(A’-A)F’] in (5.11) gives us a non-diagonal matrix in the indices A, A ‘  as is 
to be expected in a picture in which the kernel is characterised by the irreps A, A ’  of 
the ambiguity group (Moshinsky and Seligman 1981). 

In the Riemann surface picture of figure l (b ) ,  we would expect the classical kernel 
to be diagonal in A, A ’  and to reflect the change in the relations between Q and Q‘ as 
we go from one sheet of the Riemann surface to another. 

The analysis of Moshinsky and Seligman (1981) shows how we can transform 
operators from the ambiguity group picture to the Riemann surface picture for the 
canonical transformation (3.10) with the help of a unitary matrix whose elements are 

(5.12) 

With it we can write the kernel, to be denoted by K, in the Riemann surface picture 
in the form 

(5.1 1) 
h+O 

-1 /2  V,, = K exp(iAp/K) e x p ( i 2 r A p / ~ )  A,p=o,  1 , . . . ,  K - 1 .  

where ’ denotes the Hermitian conjugate and thus V;., ,  = V;,, , .  
Before substituting (5.11) and (5.12) in (5.13) we notice that 

K - I  

8 ( Q  - K Q ’ )  = K - ’  8 { [ ( Q  +2TT)/K]-Q’) 
T = O  

(5.13) 

(5.14) 
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K - l  

= ( 2 T ) - ’ K - ’  f exp{iM[(cp+2r~) /~-cp’ ]}  
?=a  M =-x  

where (5.15) follows from the fact that 

(5.15) 

(5.16) 

where the right-hand side was obtained with the help of the 6 function, and in which 
the large round brackets give 6 w , 7 ,  a,, so we finally get 

( q ’ p ’ l K * ’ w l q p ) =  (1/r)6(K’’2r- r f ) S [ K - ’ ( ( p + 2 r ~ ) - c p ’ ] S , , ~ , .  (5.18) 

The expression (5.18) is now the classical limit of the kernel that agrees with our 
intuition about the canonical transformation (3 .7)  in the action-angle phase space. 
The action which is (rI2/2) goes into ~ ( r * / 2 ) ,  but the angle 9‘ does not go into ( P / K  

but into (cp + 2 r k ) / ~  depending which sheet we are in the (0, P) Riemann surface of 
figure 1. 

We have thus not only obtained explicitly the quantum kernel given by (4.15) but 
have also shown that it gives the correct classical limit (5.18) in the Riemann surface 
picture. 

So far our discussion was restricted to the specific non-bijective canonical transfor- 
mation relating the oscillators of frequency K - ’  and 1 .  In the next section we outline 
the procedure for arbitrary non-bijective canonical transformations. 

6. Conclusion 

For general non-bijective canonical transformations in classical mechanics we have 
shown that bijectivity can be recovered, either by introducing a Riemann-type sheet 
structure in the phase plane, or by the concept of the ambiguity group (Kramer et a1 
1978, Moshinsky and Seligman 1981). The latter is more convenient as it can be 
incorporated in quantum mechanics through the concept of ambiguity spin. 

Thus, in principle, we can always obtain the representation, in the ordinary Hilbert 
spaces of quantum mechanics, of a non-bijective canonical transformation, but now 
this representation will also contain ambiguity spin indices. 
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The translation to the Wigner distribution phase space is then given by (3.16) and 
the kernel K will have not one but two sets of ambiguity spin indices, reflecting the 
fact that we are in ( q , p )  rather than in q or p space. 

The kernel can be calculated either directly, as is done for the canonical transforma- 
tion (3.10) in (4.1) and (4.15), or a quantum Liouville equation and an eigenvalue 
equation for the energy of the type discussed by Kruger and Poffyn (1977) can be 
obtained for terms appearing in the kernel, and thus it could be determined from these 
equations as was indicated in the paragraph following (4.10). 

Once we have our kernel K in the Wigner distribution phase space we can pass 
to its classical limit by taking h + 0. This limit gives the kernel in the picture associated 
with the ambiguity group. The passage from this picture to the Riemann surface one 
is a purely classical problem whose general features have been outlined by Moshinsky 
and Seligman (1981). 

Thus the procedures discussed in this and previous papers can be extended to the 
analysis of kernels in Wigner distribution phase space associated with arbitrary non- 
bijective canonical transformations. 
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